

KNT/KW/16/5109

Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination
MATHEMATICS (M₆ Differential Equations and Group Homomorphism)
Paper-II

Time : Three Hours]

[Maximum Marks : 60

N.B. :— (1) Solve all **five** questions.
 (2) All questions carry equal marks.
 (3) Question Nos. **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Prove the recurrence relation :

$$2nJ_n(x) = x[J_{n-1}(x) + J_{n+1}(x)]. \quad 6$$

(B) Prove that :

$$(i) \quad J_{-3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(-\frac{\cos x}{x} - \sin x \right), \quad (ii) \quad J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right). \quad 6$$

OR

(C) Prove that the Legendre's polynomial $P_n(x)$ is the coefficient of h^n in the ascending power series expansion of $(1 - 2xh + h^2)^{-1/2}$, $|x| \leq 1$, $|h| < 1$. 6

(D) Prove that $\int_{-1}^1 P_m(x)P_n(x) dx = \frac{2}{2n+1}$; if $m = n$. 6

UNIT-II

2. (A) If $L[f(t)] = F(s)$, then prove that :

(i) $L[e^{at} f(t)] = F(s - a)$ and
 (ii) $L[e^{-at} f(t)] = F(s + a)$.

Hence show that :

$$L[e^{at} \cos bt] = \frac{s - a}{(s - a)^2 - b^2}. \quad 6$$

(B) Find the inverse Laplace transform of $\frac{s^2 - s - 2}{s(s+3)(s-2)}$. 6

OR

(C) If $L[f(t)] = F(s)$, then prove that

$$L\left[\int_0^t f(u) du\right] = \frac{F(s)}{s}.$$

Hence find $L\left[\int_0^t \frac{\sin u}{u} du\right]. \quad 6$

(D) By using convolution theorem, evaluate :

$$L^{-1} \left[\frac{s}{(s^2 + 4)^2} \right].$$

6

UNIT-III

3. (A) Solve $y''' + 2y'' - y - 2y = 0$, given that $y(0) = y'(0) = 0$.
 (B) Solve $y'' + ty' - y = 0$, given that $y(0) = 0$, $y'(0) = 2$.

6

OR

(C) Solve $\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial x^2}$, given that $u(0, t) = 0$, $u(5, t) = 0$, $u(x, 0) = \sin \pi x$.

6

(D) Find the Fourier sine transform of $\frac{e^{-\lambda x}}{x}$, $\lambda > 0$.

6

UNIT-IV

4. (A) Prove that a subgroup N of a group G is a normal subgroup of G if and only if each left coset of N in G is a right coset of N in G .

6

(B) Let G be a group and N be its normal subgroup. Then prove that the set $\frac{G}{N}$ of all cosets is a group with respect to multiplication of cosets as $N_a \cdot N_b = N_{ab}$.

6

OR

(C) Let $f : G \rightarrow G'$ be a homomorphism of a group G onto a group G' and K be the Kernel of f . Then prove that $G/K \cong G'$.

6

(D) Let G be the additive group of real numbers and $G' = G$. Show that a mapping $f : G \rightarrow G'$ defined by $f(x) = 12x$, $\forall x \in G$ is a homomorphism. Is it 1 – 1 and onto ? Also find Kernel K of homomorphism f .

6

QUESTION-V

5. (A) Show that $(xJ_1)' = xJ_0$.
 (B) Show that $P_n(1) = 1$.
 (C) Find $L e^{-4t} (\sin 5t + 3 \cos 2t)$.
 (D) Evaluate $L \{t \cdot \sinh 2t\}$.

1½

1½

1½

1½

(E) Solve $\frac{dx}{dt} + x = 0$, $x(0) = 2$.

1½

(F) Find the Fourier cosine transform of the function

$$f(x) = \begin{cases} 1 & , \quad 0 < x < a \\ 0 & , \quad x \geq a \end{cases}$$

1½

(G) Prove that every cyclic group is abelian.

1½

(H) If $G = \{1, -1, i, -i\}$ is a group under multiplication and I , the additive group of all integers. Show that the function $f : I \rightarrow G$ defined by $f(n) = i^n$, $\forall n \in I$, is a homomorphism.

1½